

THIELE - Qualitätsphilosophie

Unsere Qualitätsphilosophie

- Optimale Kundenzufriedenheit
- Erfüllung der hohen Qualitäts-, Umwelt- und Sicherheitsansprüche an unsere Produkte
- Kontinuierliche und nachhaltige Verbesserung unserer Prozesse
- Erfüllung des QS-Systems nach ISO 9001
- Erfüllung des Umweltmanagementsystems nach ISO 14001
- Erfüllung des Energiemanagementsystems nach ISO 50001
- Mit Hilfe von KVP (kontinuierliche Verbesserungs-Prozesse) garantieren wir für langlebige und qualitativ sehr hochwertige Produkte

Unsere Ausführungen entsprechen unseren heutigen Kenntnissen und Erfahrungen. Wir geben sie jedoch ohne Verbindlichkeit weiter, auch in Bezug auf bestehende Schutzrechte Dritter. Insbesondere ist hiermit eine Eigenschaftszusicherung im rechtlichen Sinne nicht verbunden. Änderungen im Rahmen des technischen Fortschritts und betriebliche Weiterentwicklungen bleiben vorbehalten. Der Abnehmer ist von sorgfältigen Eingangsprüfungen nicht entbunden. Selbstverständlich gewährleisten wir die Qualität unserer Produkte nach Maßgabe unserer Allgemeinen Verkaufsbedingungen.

THIELE - Das Unternehmen

Das Unternehmen

Vor mehr als 80 Jahren gegründet, sind die Wurzeln von THIELE in der Herstellung von Ketten und Kettenförderern begründet.

Ketten und Förderanlagen werden in unserem werkseigenem Konstruktionsbüro nach eigenen oder gegebenen Entwürfen entwickelt. Mit der Ausführung befassen sich Ingenieure, die aufgrund ihrer jahrelangen Erfahrungen Spezialkenntnisse im Fördererbau für die verschiedenen Industriezweige verfügen.

Qualifizierte Mitarbeiter und leistungsfähige, moderne Maschinen sind die Basis für hohe Produktqualität.

Beratung und Produktentwicklung

THIELE ist spezialisiert auf Kettensysteme der Hebeund Fördertechnik. Ingenieure von THIELE beraten vor Ort und analysieren gemeinsam mit Ihnen die fördertechnischen Aufgaben und helfen bei der Dimensionierung der Fördereranlagen.

Die kundenspezifischen technischen Lösungen werden anschließend im Detail in der THIELE eigenen Konstruktionsabteilung entwickelt.

Fertigung

Zu den Fertigungsmöglichkeiten gehören verschiedene Arten von Schweißverfahren, Laser- und Plasma- und Brennschneiden, Massivumformung, Wärmebehandlung sowie mechanische Bearbeitung auf modernen CNC-gesteuerten Produktionsmaschinen.

Service

Neben der Lieferung von Ersatzteilen umfasst unser Servicespektrum Anlageninspektionen zur detaillierten Aufnahme vor Ort, Begleitung bei Anlagenaufbauten bzw. Umbauten sowie Inbetriebnahmen. Darüber hinaus werden mit den Betreibern abgestimmte Schulungsprogramme u.a. zu Produkt- und Anwendungstechnik durchgeführt.

Qualität

Die prozesssicheren Fertigungsmethoden garantieren eine hohe Qualität der THIELE-Produkte, die durch kontinuierliche Überwachung in den Test- und Laboreinrichtungen bestätigt wird. THIELE war eines der ersten Unternehmen der Branche

THIELE war eines der ersten Unternehmen der Branche weltweit, das die Qualitätssicherungskriterien gemäß DIN EN ISO 9001 erfüllt hat.

Konstruktion

Durch die hauseigene Konstruktionsabteilung stellt THIELE sicher, dass die generellen Anforderungen sowie die kundenspezifischen Wünsche bzw. Schnittstellen konstruktiv umge-setzt werden. Moderne Konstruktionssoftware erlaubt komplexe 3-D-basierte Ausführung und Darstellung der Aufgabenstellung.

Fertigung

Seit 1956 wurden THIELE Förderer patentiert. Die seinerzeit entwickelte Technik stellt die Grundlage von heutigen Förderanlagen dar.

Über Generationen erlangte Erfahrung fließt in moderne THIELE Förderanlagen ein.

THIELE Becherwerke

Becherwerksmerkmale

Maschine und Kette aus eigenem Haus!

Becherwerkskopf

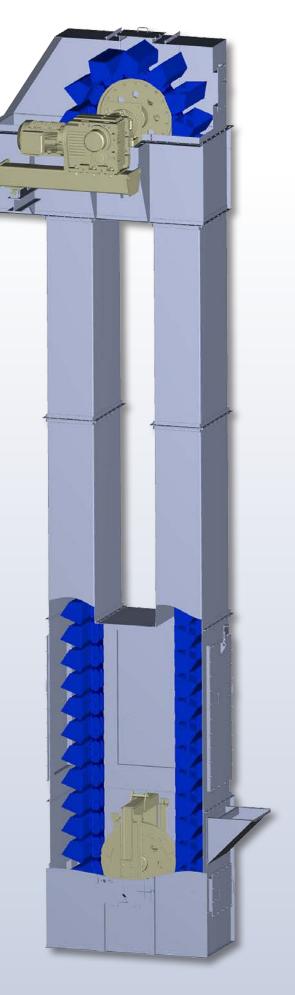
- Antriebsrad mit austauschbaren 3-fach geteilten Segmenten
- Moderne Getriebemotoren, FU gesteuert

Becherwerkskette

- Standard bis hin zu gedichteten, entkoppelten Becherwerksketten
- Becher nach DIN oder Werksnorm, Ausführungen in Stahl sowie Edelstahl (siehe S. 8)

Schlote

 Wartungsschlote mit einfach handzuhabenden Öffnungen und guter Zugänglichkeit für Montage und Wartung


Becherwerksfuß

- Umkehrrad mit austauschbaren Laufringen
- Umlenkwelle mit innenliegenden, hochverschleißfesten und wartungsfreien Gleitlagern

Sicherheits- und Überwachungseinrichtungen

Nach kundenspezifischen Anforderungen

Einsatzzwecke

- Geeignet für Schüttgüter aller Industriebereiche
- Von normaler bis hoher Abrasivität
- Mehl bis Grobkörnigkeit
- Normaltemperaturen bis 150 °C
- Auch unter hochgradig korrosiver Atmosphäre

	INIELE IDE Dec	nerwerke mit Ei	iistrang-kette
Bechergröße	Becherinhalt	Förderleistung	THIELE Kette

Becherwerk	Bechergröße [ähnl. DIN 15234]	Beche [l	rinhalt]		eistung ³/h]		E Kette raft [kN]	d [mm]		E HLB [mm]
TBE 315	315x200x4	5,8		80		450		24	14	40
TBE 400	400x224x4	9,4		110	s/m	650	ert	26		
TBE 500	500x250x5	14,9	2 %	160	sit 1,4	800	gelasert	32	152,4	
TBE 630	630x280x5	23,5	ırad 7:	250	ndigke	800	Laschen	36		
TBE 800	800x280x6	29,8	Füllungsgrad 75	310	Kettengeschwindigkeit	1200	Las	42		177,8
TBE 1000	1000x280x6	37,3		400	enges	1500		45		17.
TBE 1250	1250x280x6	46,6		500	Kett	1800		50		
TBE 1400	1400x280x6	52,2		550		2000		55		

A-A = 25 m; Standard-Ø Kettenrad = 900 mm

HLB = Hochleistungsbecherwerkskette

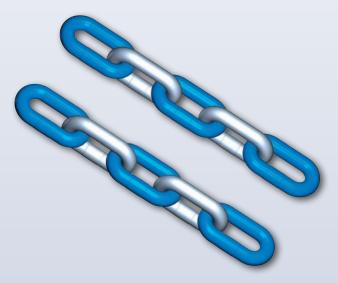
Obige Tabelle ist basierend auf Achsabstand 25 m, Kettenraddurchmesser 900 mm, Kettengeschwindigkeit 1,4 m/s Für größere Achsabstände bis ca. 70 m (oder größer) sind individuelle Berechnungen und Auslegungen erforderlich.

Zu der Tabelle gehen wir im Rahmen der Projektierung von individuellen geometrische Auslegungen gemäß Kundenwunsch aus.

Becherwerksketten

THIELE HLB

THIELE HLB-WG



THIELE HLB-W

THIELE Rundstahlkette

Genauere Angaben zu Becherwerksketten (passend für alle Becherwerke am Markt) sind dem THIELE Becherwerkskatalog zu entnehmen.

Auswahl Faktoren

Typenübersicht der THIELE Becherwerksketten									
Becher- befestigung		HLB	HLB-W (wendbar)	HLB-WG (wendbar/geschmiedet)	F _{Br} [kN]	p [mm]	d [mm]		
		45			450	140,0	25		
starr		65	65		650	152,4	30		
Sta		80 (B)	80 (B)		800	152,4	35		
	bell l	80 (A)	80 (A)		800	177,8	35		
	entkoppelt		120	120	1200	177,8	40		
	ent		150	150	1500	177,8	45		
			180	180	1800	177,8	50		
				200	2000	177,8	55		
	(A) = 177,8 mm Teilung $F_{Br} = Bruchkrs$ (B) = 152,4 mm Teilung		F _{Br} = Bruchkrat	ft p = Teilung	d = Bolze	endurchmesser			

Die Unterteilung der verschiedenen Konstruktionstypen

Starr heißt, eine fest in die Kostruktion eingebundene Becherlasche als Außenlasche mit einem Presssitz in der Bolzenbindung.

Entkoppelt heißt, eine zusätzlich aufgesteckte, in die Konstruktion eingebundene Becherlasche.

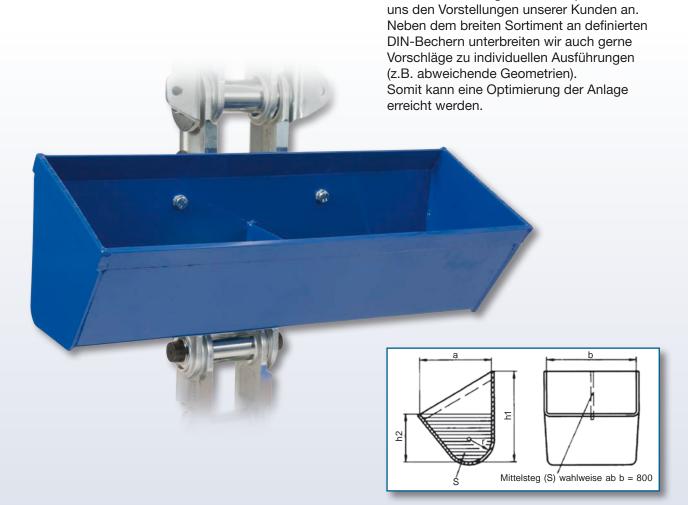
THIELE Empfehlung

1. Kettengeschwindigkeit

Schwerkraft-Entleerung: ≤ 1,1 m/s starr Fliehkraft-Entleerung: > 1,1 m/s entkoppelt

2. Becherbreite

Die Stützbreite der Kette im Kettenrad sollte mindestens 1/6 der Becherbreite betragen.


3. Kettenräder

Empfehlung für die Ausführung

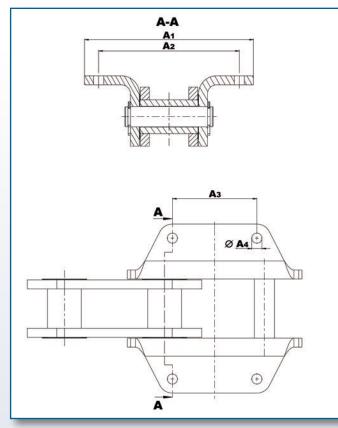
≤ 15 m: Achsabstand	> 15 m: Ach	nsabstand	
Antriebsrad verzahnt Umlenkrad glatt	Antriebsrad glatt Umlenkrad glatt	Antriebsrad glatt Umlenkrad verzahnt	

Becher

Bei der Ausführung der Becher passen wir

	Tiefe Becher mit ebener Rückwand nach DIN 15234									
b	а	h,	h ₂	r	r Gewicht [kg] bei Wanddick			Volumen		
[mm]	[mm]	[mm]	[mm]	[mm]	4 mm	5 mm	6 mm	[dm³]		
160	160	200	106	50	3,18			1,90		
200	160	200	106	50	3,76			2,40		
250	200	250	132	63	5,82	7,27		4,60		
315	200	250	132	63	6,82	8,59		5,80		
400	224	280	150	71	9,40	11,80		9,40		
500	250	315	170	80	12,80	16,10	19,40	14,90		
630	280	355	190	90	17,60	22,10	26,60	23,50		
800	315	400	212	100		30,60	36,90	37,30		
1000	355	450	236	112		42,00	50,30	58,30		
1250	400	500	265	125			68,50	92,00		

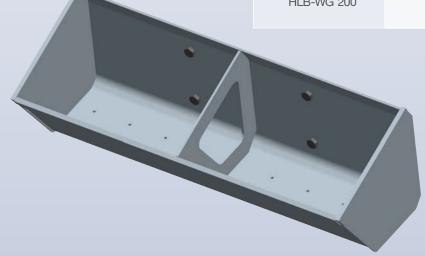
b = Becherbreite


h, = Höhe Rückwand

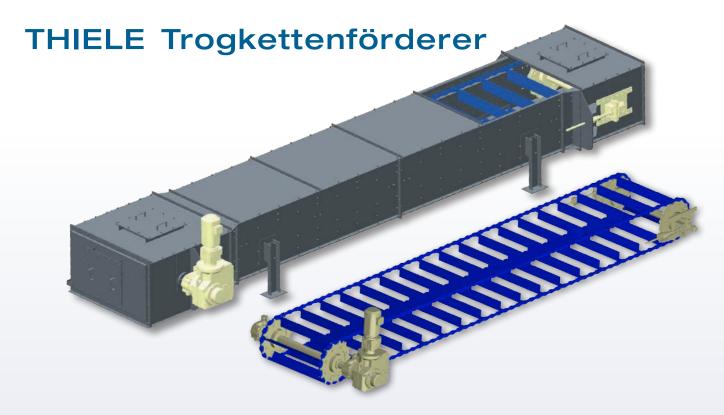
a = Ausladung

h₂ = Höhe Schöpfkante

Becheranbindungen



Wir passen die Becherschnittstelle Ihrer Anlage an!
Durch flexible Fertigung können alle
Recheranschlussmaße A1 – A4 kundenspezifisch


gefertigt werden.

Anhaltswerte der gängigen Lochbilder zeigt die rechts angefügte Tabelle.

Baugröße THIELE-Kette	A1	A2	A3	A4
HLB 45		140	100	14
HLB-W 45		158	58,7	12,7
		184,6	63,5	17,5
HLB 65 HLB-W 65		190	100	17,5
		200	130	18
		250	150	18
HLB 80 HLB-W 80		283	200	17
	her	330	139,7	17,5
HLB 120	Bec	184,4	63,5	16
HLB-W 120	läche	250	150	18
HLB-WG 120	lagef	330	200	17
	entsprechend Anlagefläche Becher	177,8	88,9	16
HLB 150 HLB-W 150	scher	300	150	18
HLB-WG 150	ıtspre	330	200	17
	e	330,2	166,6	16
		228,6	92,3	16
HLB 180		300	150	18
HLB-W 180		330,2	139,7	16
HLB-WG 180		350	200	17
		370	200	18
HLB-WG 200		360	200	17
1 ILD-VVG 200		380	200	21

Stahlbau und Kette aus eigenem Haus!

Antrieb

- Moderne Getriebemotoren, FU gesteuert
- Einfacher Austausch der Zahnsegmente ohne Öffnung der Kette

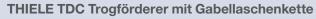
Kette

- Einstrang- oder Doppelstrangkettenbänder verfügbar
- Geschmiedete Gabellaschen je nach Anforderungen auch in korrosionsbeständiger Ausführung
- Breites Spektrum an Mitnehmern u.a. aus Verbundwerkstoffen, verschleißfesten Stählen, in verschiedensten Geometrien

Tröge

- Tröge mit austauschbaren Führungs- und Schleißschienen oder einfach wechselbaren Bodenblechen
- Wahlweise mit Auskleidungen wie z.B. Hartmangan, Schmelzbasalt oder Auftragsschweißungen
- Bei hochkorrosiver Atmosphäre (z.B. bei alternativen Brennstoffen) Tröge in feuerverzinkter Ausführung,
 Führungsschienen aus verschleißfestem Kunststoff

Umkehrstation


- Einfacher Austausch der Zahnsegmente ohne Öffnung der Kette
- Schmutzabstreifer
- Gleichmäßige Kettenspannung über Trapezspindel und Evolutfeder

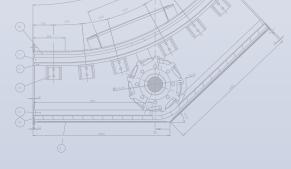
Sicherheits- und Überwachungseinrichtungen nach kundenspezifischen Anforderungen

Einsatzzwecke

- Geeignet für Schüttgüter aller Industriebereiche
- Von normaler bis hoher Abrasivität
- Mehl bis Grobkörnigkeit
- Normaltemperaturen bis 150 °C
- Auch unter hochgradig korrosiver Atmosphäre

Trogförderer	Trogbreite [mm]	Troghöhe [mm]		rschnitt 1 ²]		eistung ³/h]		GALA [mm]
TDC 250	250	400	0,04		32	m/s		
TDC 500	500	650	0,18	% 0	126	sit 0,2	42	
TDC 750	750	650	0,26	rad 70	189	ndigke	17	
TDC 1000	1000	650	0,35	Füllungsgrad	252	chwir)0 / 260
TDC 1250	1250	900	0,61	Füll	441	Kettengeschwindigkeit 0,2		200
TDC 1500	1500	900	0,74		529	Kett		

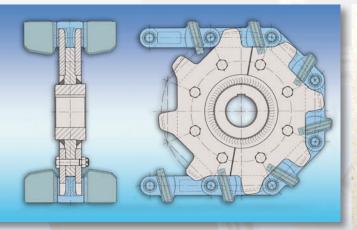
Standard Zähnezahl Kettenrad = 11


GALA = Gabellaschenkette

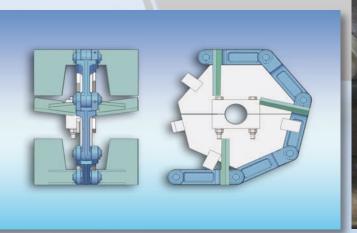
Obige Tabelle ist als Referenz anzunehmen.

Bei Kettengeschwindigkeit von 0,4 m/s verdoppelt sich die Kapazität.

In Abhängigkeit von Fördererbreite und - höhe sowie der Förderergeschwindigkeit kann die Förderleistung angepasst



Kettenräder und Umlenkrollen



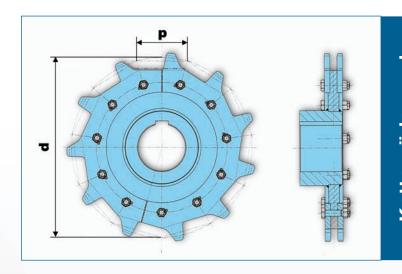
Wartungsfreundliche geteilte Zahnradsegmente

Die optimale Lebensdauer einer THIELE-Kette kann nur dann erreicht werden, wenn beim Kettenwechsel auch die Kettenräder erneuert werden. Oft reicht es dabei aus, nur die verschlissenen Zahnscheiben oder Laufringe zu wechseln. Austauschbare Zahnradsegmente sind in allen üblichen Größen erhältlich. Bei Bedarf kann THIELE auch komplette Kettenräder, Umlenkrollen und Wellen liefern.

Antriebskettenrad

Umlenkkettenrad

Speziell gehärtete Laufflächen und Zahnflanken sorgen für optimale Standzeiten


Kettenräder in allen Teilungsgrößen passend zu allen Gabellaschen:

d = Teilkreis

p = Teilung

 $z = Z\ddot{a}hnezahl$

$$d = \frac{p}{\sin \frac{360^{\circ}}{2 \times z}} [mm]$$

	z	p = 102	p = 142	p = 160	p = 175	p = 200	p = 220	p = 230	p = 250	p = 260
	6	204,00	284,00	320,00	350,00	400,00	440,00	460,00	500,00	520,00
	7	235,09	327,28	368,76	403,33	460,95	507,05	530,10	576,19	599,24
	8	266,54	371,06	418,10	457,30	522,63	574,89	601,02	653,28	679,41
	9	298,23	415,18	467,81	511,70	584,76	643,24	672,48	730,95	760,19
	10	330,08	459,52	517,77	566,31	647,21	711,93	744,30	809,02	841,38
	11	362,05	504,02	567,91	621,16	709,90	780,88	816,38	887,37	922,86
	12	394,10	548,65	618,19	676,15	772,74	850,01	888,65	965,93	1004,56
1	13	426,22	539,36	668,57	731,25	835,72	919,29	961,07	1044,65	1086,43
	14	458,39	638,14	719,03	786,44	898,79	988,67	1033,61	1123,49	1168,43
	15	490,59	682,98	769,56	841,70	961,95	1058,14	1106,24	1202,43	1250,53
	16	522,83	727,87	820,13	897,02	1025,17	1127,68	1178,94	1281,46	1332,72
	17	555,10	772,79	870,75	952,38	1088,44	1197,28	1251,70	1360,55	1414,97
	18	587,39	817,75	921,40	1007,78	1151,75	1266,93	1324,52	1439,69	1497,28
	19	619,70	862,73	972,09	1063,22	1215,11	1336,62	1397,37	1518,88	1579,64
	20	652,03	907,73	1022,79	1118,68	1278,49	1406,34	1470,26	1598,11	1662,04

Werkstoffe Gabellaschen

Bauteil	Nummer	Werkstoff Kurzname	Wärmebehandlung	maximale Randschichthärte (HRC)
		THIELE Standardwerk	stoffe Gabellaschen	
Gabellasche	1.0412	27MnSi5	vergütet	
Gabellasche	1.6758	23MnNiMoCr5-4	vergütet	
Gabellasche	1.7147	20MnCr5	einsatzgehärtet	60 ±3 / 0,6+0,3**
		THIELE Sonderwerks	toffe Gabellaschen	
Gabellasche rost-/säurebeständig	1.4571	X6CrNiMoTi17-12-2		
Gabellasche hitzebeständig	1.4841	X15CrNiSi25-20		
Gabellasche	1.6758	23MnNiMoCr5-4	einsatzgehärtet	60 ±3
Gabellasche	1.6758	23MnNiMoCr5-4	induktivgehärtet	50 ±2

Werkstoffe Zubehör


Bauteil	Nummer	Werkstoff <i>Kurzname</i>	Wärmebehandlung	maximale Rand- schichthärte (HRC)			
	Т	HIELE Sonderwerkstoff	e Bolzen				
Bolzen	1.7225	42CrMo4	induktivgehärtet	56 ±2			
Bolzen	1.4034	X46Cr13	induktivgehärtet	55 ±2			
		THIELE Werkstoffe Bu	chsen				
Buchse	1.5026	55Si7	vergütet	50			
Buchse	1.4034	X46Cr13	vergütet	50			
	THIE	ELE Werkstoffe Kettenra	dsegmente				
Kettenradsegment	1.0503	C45	induktivgehärtet	55 ±2 / 3+2			
Kettenradsegment	1.7225	42CrMo4	induktivgehärtet	55 ±2 / 3+2			
		THIELE Werkstoff Umlei	nkräder				
Umlenkrad	Umlenkrad 1.0503 C45 induktivgehärtet 55 ±2 / 3+2						
	THIELE Werk	stoffe Mitnehmer: S235	JR, S355J2, S700MC				
THIELE	Sonderwerksto	offe Mitnehmer: 400 HB,	X5CrNi18-10, X15CrNiSi2	25-20			


Standard Festigkeit (N/mm²)	Standard Temperaturbereich	Standard Komb Nummer	ination Bolzenwerkstoff Kurzname
	THIELE Standard	werkstoffe Gabellaschen	
700 900	max. 200 °C max. 100 °C	1.7131	16MnCr5 *
1150	max. 250 °C	1.6758	23MnNiMoCr5-4 *
1000	max. 100 °C	1.7131	16MnCr5 einsatzgehärtet
	THIELE Sonderv	verkstoffe Gabellaschen	
600	max. 100 °C	1.4034	X46Cr13
10 130 650	max. 900 °C max. 600 °C RT	1.4841	X15CrNiSi25-20
1150	max. 100 °C	1.6758	23MnNiMoCr5-4 einsatzgehärtet
1000	max. 100 °C	1.6758	23MnNiMoCr5-4

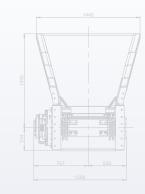
* Gabellaschen mit Buchse: 16MnCr5 einsatzgehärtet, 23MnNiMoCr5-4 einsatzgehärtet

** Größere Einhärtetiefe möglich mit entsprechend reduzierter Bruchlast

Alle Gabellaschen werden in der eigenen Gesenkschmiede produziert

Die Zweistrang-Gabellaschen sind mit angeschmiedetem Mitnehmerhalter ausgeführt.

Ausführliche Informationen über die verschiedensten Varianten sind dem THIELE Gabellaschenkatalog zu entnehmen.


THIELE Förderanlagen

Für den Einsatz im Bergbau bietet THIELE folgende Förderer an:

- Ladeförderer
- Streckenförderer

• Brecherförderer (inkl. Brecher)

Bunkerabzugsförderer

Beispiel: Brecherförderer

Einsatzort: Salzbergbau

Art des Förderers: Kettenkratzerförderer DAKB **Kettenart:** Rundstahlkette 30x108

Fördererleistung: 1000 T/h

Beispiel: Bunkerabzugsförderer

Einsatzort: Salzbergbau **Art des Förderers:** Plattenband **Fördererleistung:** 1500 T/h

THIELE bietet innovative Lösungen entsprechend der Kundenwünsche an. Jahrzehntelange Erfahrung mit Fördererketten, gepaart mit hochmodernen Entwicklungswerkzeugen, für individuelle Fördererauslegung sind ein Garant für hochleistungsfähige Förderanlagen.

THIELE Förderanlagen - Sonderlösungen

THIELE bietet seit Jahrzehnten Retrofits zu bestehenden Förderanlagen an.

Beispiele:

- Becherwerksumbau u.a. von Rundstahlketten auf Zentralkette
- Reclaimer von Blocklaschenketten auf Laschenketten mit wälzgelagerten Laufrollen
- TKF von Laschenketten auf geschmiedete Gabellaschenketten
- Ältere bzw. vorhandene Anlagen können in vielen Fällen leistungsgesteigert werden, wobei gleichzeitig eine Wartungsminimierung sowie eine Erhöhung der Lebensdauer im Vordergrund steht
- In solchen Fällen werden Förderer neu berechnet und ausgelegt
- Je nach Optimierungsgrad werden Antriebe mit Wellen und Verlagerungen sowie Ketten, Kettenführungen umgebaut bzw. modernisiert

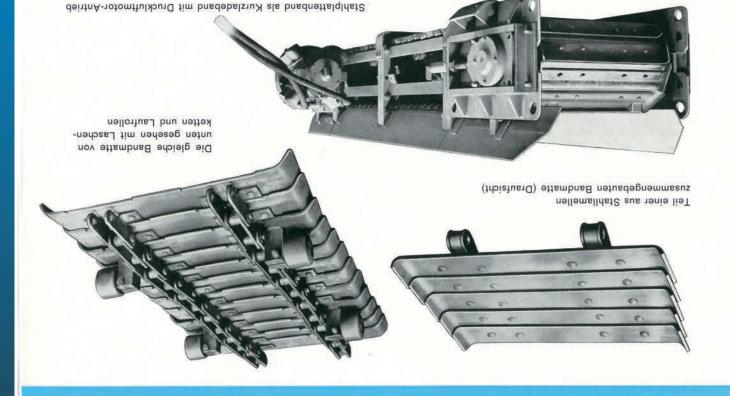
Beispiel: Umbau einer Plattenbandanlage ...

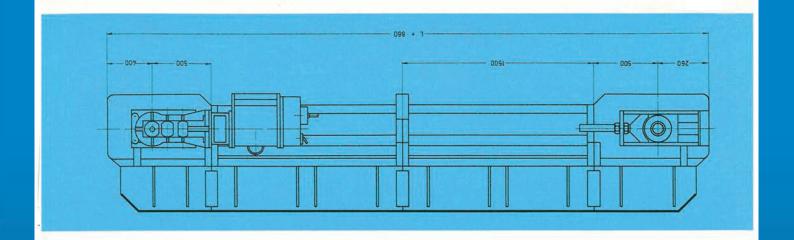
... u.a. Austausch des Vorgelegeantriebes auf leistungsfähige und effiziente moderne Antriebe. Einsatz einer verstärkten Bandmatte mit Laufrollen, ausgestattet mit wartungsfreien Wälzlagern.

Beispiel: Umbau eines Alternativbrennstoff-Förderers ...

... von Laschenkette auf THIELE Gabellaschenkette sowie Ausstattung des Förderers mit neuen Führungen, neuer Welle mit neuen Kettenrädern.

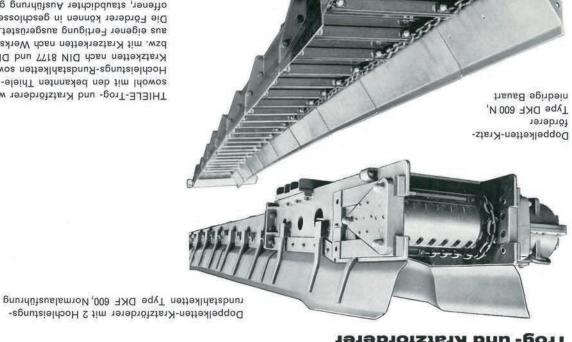
THIELE-Stahlplattentransportbänder für Schütt- und Stückaut

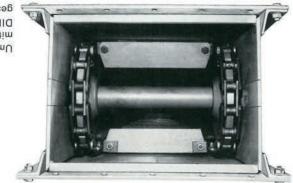

OYE



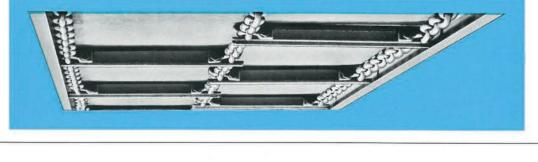
Erwartungen,

setzt, wo ein störungsfreier Transport von Schüttund Stückgütern gefordert wird. Die Verschleißfestigkeit aller Teile liegt weit über den üblichen


und Wirtschaftlichkeit. Es wird überall da einge-



für Schütt- und Stückgut THIELE-Transportaniagen


Trog- und Kratzförderer

schleißfester Steinauskleidung lieferbar. gen Schleißleisten sowie auch mit hochver-Förderer sind mit Stahltrögen und hochwertikastensystem hergestellt werden. Die werden, wobei alle Ausführungen im Bauoffener, staubdichter Ausführung geliefert Die Förderer können in geschlossener, aus eigener Fertigung ausgerüstet. bzw. mit Kratzerketten nach Werksnormen Kratzketten nach DIN 8177 und DIN 15263 Hochleistungs-Rundstahlketten sowie mit sowohl mit den bekannten Thiele-THIELE-Trog- und Kratzförderer werden

geschlossener Bauart DIN 8177 zweisträngig in mit Kratzerketten nach Umkehre eines Trogförderers

Dreifach-Kratzband mit Hochleistungsrundstahlkette und Profilkratzern

Sonderanlagenkatalog Anno 1960 Förderanlagenkatalog Anno 1960

Förderanlagen

189

